
 1

The Terabyte Analysis Machine Project

The Distance Machine

James Annis, Gabriele Garzoglio, Kurt Ruthsmandorfer, Chris Stoughton

Abstract: The Terabyte Analysis Machine is a cluster designed to allow research into the use of

large scientific databases. Our initial program is to explore efficient database re-indexing and re-

partitioning as a way to take maximal advantage of sophisticated algorithms for use in specific

astronomical problems. The model is to allow the scientist to redistribute the database to make very

efficient a specific problem, e.g., finding the kth nearest neighbor, and allow them to develop on

that database for a month before moving onto the next redistribution scheme. We will discuss the

main ideas of a prototype design, giving a few details on the kth nearest neighbor repartitioning

module.

Introduction

The databases of modern physics and

astronomy contain hundreds of millions of

objects and have total sizes of order a

Terabyte. Spatial data structures provide

efficient multi-dimensional access methods to

these large datasets. The database designers

make use of spatial data structures that

provide good general purpose access to the

data. It is clear, however, that the best data

structure to use depends on the problem to be

solved. That is, the optimal indexing and

partitioning of the data is most often

algorithm dependent.

The distance machine is an attempt to build

an infrastructure to allowing physicists and

astronomers access to the powerful

algorithms requiring repartitioning and re-

indexing most relevant to their particular

problem, without dealing with the low level

issues of remote database access,

authentication and parallelization.

Proposal

We propose to prototype a facility that

acquires, re-indexes, and re-partitions a

database. We aim to make it straightforward

for the physical scientist to incorporate a

spatial data structure based algorithm into the

facility to guide the re-indexing and re-

partitioning. We choose as our example

algorithm kth nearest neighbor finding. This

problem is an area of active research in the

computer science community (there are no

exact solutions for dimensions greater than 10

that are faster than a brute force scan), plays a

central role in SPH numerical calculations of

structure formation and, we believe, will form

the basis of a state-of-the-art galaxy cluster

finding algorithm. Brute force solutions to the

kth nearest neighbor problem work, given

enough compute power and time, but for

dimensions of order 5, there are significant

speed-ups that can be obtained from tree-

based algorithms. We wish to explore the

usefulness of a facility where a database is

repartitioned for an intermediate timescale, on

order of a month, allowing the astronomer an

efficient code development, testing,

validation cycle with the data.

 2

Scales

The SDSS database will have:

 500 Gbytes database

 250 million objects

 100 million galaxies

 2.5 Kbytes object size

 500 byte tag object size (example of

tag with about 50 parameters of

interest for the specific analysis)

 50 Gbytes tag database

Moving the tag database:

 50 Gbytes at 10 Mbytes/sec => 1.5

hours to transfer over network

 50 Gbytes at 30 Mbytes/sec => 0.5

hours to write to disk

Dimensionality of the problem:

 120 parameters per object

 5 parameters used for cluster finding:

ra, dec, g-r, r-i, and i'

Prototype

The Distance Machine does the following

steps:

1. extracts a tag database from SX

2. places the tag database on local

machines

3. re-indexes and re-partitions the tag

database

4. queries the tag database and sends

results to problem specific analysis

tools

The SDSS database architecture developed

at JHU is called SX1; it currently relies on

Objectivity. The distance machine will work

on a subset of the SX, in a local tag database.

A couple of techniques have been

considered to implement the tag extractor

module. The easiest one uses the analysis

engine mode of SX. This technique, already

implemented, queries SX for a subset of

parameters from the objects of interest. The

tag objects are sent from SX to TAM via a

socket and then stored on local disk. The

analysis engine approach has the advantage of

being independent of underlying database.

We are, however, planning to use

Objectivity for the local database; this opens

up some interesting possibilities. A tool of

general interest could be built using a tag

extraction layer intermediate between SX and

Objectivity making use of Globus2 tools,

similar in spirit to the CERN/Caltech CMS

re-clustering tools3. This tool could extract

the tag objects from Objectivity, store them

remotely as Objectivity databases, and ship

them to the extractor module via globusFTP

agents. As such code exists, and naturally

links to a grid infrastructure, we will examine

this approach closely.

Both approaches need the specification of a

tag schema. The tag extractor needs the

knowledge on the structure of the data to

query SX for the subset of parameters of

interest and for saving the objects locally. The

new tag database will then rely on this

schema for all the re-indexing, re-partitioning

and querying operations. Having chosen

Objectivity as tag database, DDL (Data

Description Language) seems the natural

choice to produce easily the code that has to

be linked to the TAM module

implementations. However, we are still

investigating other options: there is soon to be

technology inside SX to make defining new

schema easy. This could allow the distance

machine to offer facilities to deal with

complex data structure keeping the coding of

the schema a relatively easy process.

The same schema definition will be part of

the repartitioning module also. The core of

our kth nearest neighbor module makes use of

the Approximate Nearest Neighbors library

(ANN)4. This library is well commented and

implements several of the partitioning and

searching algorithms available in 1998; also

very important, it’s “off the shelf”. The most

recent version of this C++ library (v0.2)

represents a vector in the space as a pointer to

an array of coordinate. The library offers

 3

facility to build either a k-d tree or a b-d tree

of the data and to search the kth nearest

neighbor within this structure. This approach

is fast and immediately of use for a data set

size that fits into memory. As mentioned, we

operate with tag databases of the order of 50

Gbytes; therefore the modification of this

library to deal with data laid on disk is

necessary. The choice of Objectivity offers an

easy way of implementing the persistency of

the tags. We are implementing a general-

purpose wrapper that stores into memory a

reference to the persistent object (plus other

information of internal use, like the number

of copies in memory of the same object).

Overloading the operators of assignment and

indexing, this wrapper presents ANN

transparently a static representation of the

space (as big as we need) in about ten bytes

per object.

At this point, the structure of the k-d tree,

that has an object-oriented representation

inside ANN, can be stored using again

Objectivity. The leaf nodes of the tree are the

natural re-indexing of the database for

efficient nearest neighbor queries. That is, the

natural re-partitioning of the database stores

each non-empty node, whose size may range

from 8 to 32 Kbytes (bucket size),

sequentially in the database. Reasonable

values of the Objectivity parameters are 32

Kbytes for the page size, 6 - 60 Mbytes for

the client cache size, 1 - 10 Mbytes for each

container. This fine-tuning, aimed to enhance

performance, has yet to be investigated.

We believe this approach is generalizable to

other algorithms, not necessarily kth nearest

neighbor ones, allowing them to be placed in

the infrastructure with little effort. Clearly a

long term aim is to allow the definition of

schema and interfaces (i.e. to the wrapper)

that make possible the re-indexed and re-

clustered/re-partitioned of a database on the

fly.

Lastly, and perhaps outside the range of the

prototype, is the challenge of parallelizing

this operation. Divide and conquer techniques

work well for this work, and the TAM is

designed to make divide and conquer

techniques easy. TAM is a cluster of

(currently) 5 Linux machines, with 70Gbytes

of local disk each plus a fibre channel

connection to a common terabyte RAID box.

The information of the disk layout is needed

at the level of the re-clustering module, the

design of which must include the notion of

parallelization of the query process. There is

more than one algorithm that can be

implemented in order to exploit the parallel

nearest neighbor search. We feel most

confident with the so-called shadow

technology, which defines replicated border

regions that are included in the search of

those query points that lay inside the non-

replicated portions.

Schedule

1. Tag extractor module: Jan 31

2. Integrating ANN with Objectivity: Feb 14

3. Re-clustering module: Feb 28

4. Saving/Retrieving ANN trees: Mar 21

5. Set up an analysis engine: Mar 31

References
1 The SDSS Science Archive

www.sdss.jhu.edu/ScienceArchive/home.html

2 The Globus Project, www.globus.org

3 Koen Holtman, “Data Clustering Research

in CMS”, Proceeding of CHEPP 2000,

Padova, Italy,

kholtman.home.cern.ch/kholtman/

4 ANN Programming Manual; David M.

Mount, Department of Computer Science and

Institute for Advanced Computer Studies,

University of Maryland,

www.cs.umd.edu/~mount/ANN/

http://www.globus.org/

